Serrin’s type overdetermined problems in convex cones
نویسندگان
چکیده
منابع مشابه
Serrin Type Overdetermined Problems: an Alternative Proof
We prove the simmetry of solutions to overdetermined problems for a class of fully nonlinear equations, namely the Hessian equations. In case of Poisson equation, our proof is alternative to the ones proposed by Serrin (moving planes) and by Weinberger, and it makes no direct use of the maximum principle, while it enlightens a relation between Serrin problem and isoperimetric inequality.
متن کاملBornological Completion of Locally Convex Cones
In this paper, firstly, we obtain some new results about bornological convergence in locally convex cones (which was studied in [1]) and then we introduce the concept of bornological completion for locally convex cones. Also, we prove that the completion of a bornological locally convex cone is bornological. We illustrate the main result by an example.
متن کاملEgoroff Theorem for Operator-Valued Measures in Locally Convex Cones
In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...
متن کاملRough convex cones and rough convex fuzzy cones
Based on the equivalence relation on a linear space, in this paper we introduce the definition of rough convex cones and rough convex fuzzy cones and discuss some of the fundamental properties of such rough convex cones.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2020
ISSN: 0944-2669,1432-0835
DOI: 10.1007/s00526-019-1678-x