Serrin’s type overdetermined problems in convex cones

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serrin Type Overdetermined Problems: an Alternative Proof

We prove the simmetry of solutions to overdetermined problems for a class of fully nonlinear equations, namely the Hessian equations. In case of Poisson equation, our proof is alternative to the ones proposed by Serrin (moving planes) and by Weinberger, and it makes no direct use of the maximum principle, while it enlightens a relation between Serrin problem and isoperimetric inequality.

متن کامل

Bornological Completion of Locally Convex Cones

In this paper, firstly, we obtain some new results about bornological convergence in locally convex cones (which was studied in [1]) and then we introduce the concept of bornological completion for locally convex cones. Also, we prove that the completion of a bornological locally convex cone is bornological. We illustrate the main result by an example.

متن کامل

Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones

In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...

متن کامل

Rough convex cones and rough convex fuzzy cones

Based on the equivalence relation on a linear space, in this paper we introduce the definition of rough convex cones and rough convex fuzzy cones and discuss some of the fundamental properties of such rough convex cones.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2020

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-019-1678-x